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The Application of Statistical

Decision Theory to a Missile Testing Problem*

ABSTRACT

Experiments are planned, performed, and analyzed for two main

purposes: first, to discover facts; and second, to use those facts

in making decisions.

Classical statistics typically considers these two purposes

separately, with special emphasis on discovering (or estimating) the

facts.

Statistical decision theory, on the other hand, considers each

problem as a unified whole, so that the experiment and its analysis

are greatly influenced (a) by the decision which is to be made, and

(b) by the cost of the experiment itself.

As the price for treating more of the important factors explicit-

ly, statistical decision theory requires more information than the

classical methods. On the other hand, problems can be treated which

are inaccessible to the classical methods, for example: "Shall we

do any testing at all?"

*This paper is a revised and expanded version of a paper delivered
at the World-Wide Operations Analysis Technical Conference - 12-13
October 1961
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1. Introduction

In this paper, we wish to describe two approaches, each applicable

to a wide variety of statistical problems. For expository purposes,

we have chosen to apply both these approaches -- which we call, respec-

tively, the classical approach and the statistical decision theory

approach -- to a specific problem. In order to clarify the principles

which we are presenting, we have sacrificed the realism of the example

by making several simplifying assumptions.* Of course, both the

methods discussed could be applied without making these simplifying

assumptions, just as they could be applied to a wide variety of other

real problems.

The central ideas of each of these approaches can be distinguished

as follows:

a. Classical Statistics:

"What are the facts?"

b. Statistical Decision Theory:

"What shall we do?"

Because of the difference in these central ideas, there is a great

difference between the two approaches in the parts of the total pro-

blem which are included in the mathematical model. Statistical

decision theory, which focuses attention on the pragmatic question

"What shall we do?", takes into consideration factors which are typi-

cally excluded from the classical approach.

*Two specific examples of this simplification: (a) We assume that
all targets have the same value to the attacker and that all are
equally hard) (b) we treat reliability alone, whereas real problems
require that reliability and accuracy be treated together in the
same model.

2



After reviewing both approaches, we will illustrate them by apply-

ing them to a specific example. The example concerns the question,

"How many missiles should be expended in operational test firings?"

It is important to realize that we are not concerned with R and D test

firings, whose primary purpose is to improve missile design and reli-

ability, but only with the later firings from operationally configured

sites. The primary purposes of those later firings are (a) to evalu-

ate missile reliability, and (b) to provide guidance for the allocation

of missiles to targets.

2. Classical Statistics

Classical statistics is concerned with the theory of how to use

the results of an experiment (a) to test hypotheses, or (b) to esti-

mate parameters. (A hypothesis might be any statement whose truth is

unknown, such as "Missile reliability is greater than 50%." A para-

meter might be any variable whose true value is unknown, such as the

reliability of our missiles.)

A parameter estimate may be either (1) a point estimate, or (2)

an interval estimate. (A point estimate is a statement such as "Based

on these test results, reliability is 0.63." An interval estimate is

a statement of the form "Based on these test results, we can say with

80% confidence that the reliability is between 0.53 and 0.71.") The

latter type of estimate tells us how trustworthy the specific numbers

may be.

a. Theory of Estimation.

Classical statistics emphasizes the development of theory

to guide one in choosing functions of the sample observations for

testing hypotheses, and for point and interval estimation. Not

always ignored, but usually omitted from explicit treatment in the

mathematical model, are considerations of testing costs and the lose
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associated with making a wrong estimate. There is no suggestion in-

tended here that classical statistics could not take these things
into account, implicitly or even explicitly) however, it is not

usually done. For example, a brief search through several standard

statistics texts reveals no mention at all of the cost of testing,

except by implication in the discussion of sequential testing (since

one of the stated advantages of sequential testing is that it de-

creases the average number of items tested).

b. Design of Experiments

We should also remark here that the large body of litera-

ture on the "design of experiments" does not (in general) refer ex-

plicitly to the cost of experimentation, but asks questions like "How

much testing is necessary to achieve the precision and confidence re-

quired?" Of course, if the answer to this question implies an un-

reasonably costly experiment, the words "necessary" and "required"

will be redefined and the question will be asked again. In this

way the costs do have some effect on the classically-designed experi-

ment, but in a subjective and imprecise way. In fact, most of the

"design of experiments" is directed to the very different problem of

avoiding undesired interactions between the things being measured or

tested and random or irrelevant disturbances.

3. Statistical Decision Theory

Statistical decision theory, on the other hand, uses the same

mathematical theory of probability which underlies classical statis-

tics, but increases the scope of the mathematical model to include

explicit consideration of (a) cost of testing, (b) decisions which

may be influenced by test results, (c) cost of making the wrong

decision, and (d) Judgments on the likelihood of the various results

(prior probabilities). One penalty for increasing the scope of the
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model is, of course, increased complexity. Another fact, often re-

garded as a penalty, is that statistical decision theory gives re-

sults which depend explicitly on the above four factors, so that

the applicability of the results is usually limited to the one speci-

fic problem considered. However, we believe that those factors logi-

cally should have an effect on the amount of testing, and on the

actions taken after observing the results, so that the generality

obtained by other methods may be illusory.

The question, as we see it, is simply whether those four

factors should be taken into account by explicitly including them

in the model, or whether they should be taken into account by rely-

ing on the subjective Judgment of the statistician. In the case

of an experienced statistician, whose experience is relevant to the

problem at hand, the classical approach will be more convenient)

however, we can see no method of determing whether the statistician's

experience is in fact relevant except by comparing his opinions with

objective calculations which take the additional factors into account

explicitly. For most operations analysis problems, and for our exam-

ple in particular, the additional information needed for statistical

decision theory can be made available by reasonable assumptions.

4. Our Specific Missile Testing Problem

The missile testing problem has two parts: first, "How many

missiles should be fired in an operational test program?" and

second, "How should the results of the test program be used as a

guide in targeting?"

a. The Classical-Statistical Approach

The question of how many missiles to fire can be partially

answered by the methods of classical statistics. Before explaining

5
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the method used, we will describe how confidence limits for reli-

ability are determined.

(1) Confidence Limits

The confidence limits are based on the mathematical

theory of probability and the binomial theorem, and are summarized

in graphs of the type shown in Fig. i.* The true reliability, R,

Is plotted on the ordinate and the observed fraction of successes

in a sample, ro, is plotted on the abscissa. Each pair of curves

gives upper confidence limit RU and lower confidence limit RL,

for a specific sample size (number of missiles tested) and a speci-

fic value of the confidence coefficient C, whose significance will

appear in a moment. One enters the appropriate graph with the ob-

served fraction of successes, ro, draws a vertical line, and then

reads RU from the upper curve and RL from the lower. Since RU and

RL depend on r0, the observed fraction of successes, which is of

course a random variable, they too are random variables. The curves

are so calculated that, if one determines RU and RL in this way

from each of many experiments, using the same confidence coefficient

C each time, then the random variables RU and RL will in fact bracket

the true probability R a fraction C of the time.

(2) Choice of Confidence-Coefficient

The experimenter chooses C. Of course, he wants a

large C; that is, he wants a high probability of covering the true

value. He also wants a narrow band for R, that is he wants RU - R L

to be small. But, for a given sample size, as C increases, RU - RL

also increases, (as illustrated in Figure 1) so the experimenter

must compromise. And it is here that the first weakness of classical

statistical theory shows up. It offers no guidance as to how to

resolve the conflict between the desire for large C and the desire

for small RU - RL. Published aids for computing Ru and RL are

*See Page 32.
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typically for C - .8, .9, .95 and .99, and so a value from this

set is usually chosen. But the practical implications of the choice

of C and of RU - RL are not ordinarily considered in the classical

theory, and are very difficult even to state correctly.

(3) Choice of Number Tested

Further, if both large C and small RU - RL are required,

n must be large. Here again, the classical theory provides no

guidance on how to resolve the conflict between the desire for large

C and small RU - RL on the one hand, and the cost of large n on the

other. Past experience, Judgment, and intuition must be used in

making the choice. For example, a military headquarters could use

its collective experience and judgment to select values of C and

RU - RL which were felt to be appropriate when ro = .5. These

chosen values could .be used to determine the number of missiles to be

tested, by means of confidence-limit curves of the kind shown in Fig.

1. If the values of C and R. - RL that were chosen were appropriate

for the headquarters' needs, then this would be a valid and satis-

factory method of choosing the number to test.

(4) Difficulties in Making Those Choices

However, because the implications of a given choice are

not obvious, there will surely be disagreement as to the most reason-

able values. This problem is aggravated by the fact that we would

like to employ the Judgment of military officers who may not have

statistical training, and who will find it difficult to direct their

Judgment towards the choice of C and RU - RL. It seems that a quanti-

tative assessment of the various choices would have to employ some or

all of the additional information used in statistical decision theory,

and employ it in rather similar ways.
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(5) Using the Classical Estimates

We should also notice here that the second question,

"How to use the results of the test program as a guide in targeting"

is not readily answered by classical theory, even after the experi-

menter has determined the number of missiles to test. The straight-

forward, uncritical use of an unbiased point estimate of the reli-

ability as if it were the true reliability may lead to poor decisions,

particularly if the cost function is biased. By using Judiciously

biased point estimates one may be able to compensate for biased cost

functions, but classical theory offers little guidance on how to be

Judici.ous in this selection.

b. The Statistical Decision Theory Approach

We shall consider now the statistical decision theory

approach. Since the decision theory model explicitly includes more

than the classical model, we must gather more information before the

model can be used.

(1) The Set of Possible Actions

For example, we must formulate the purpose of the testing

in such a way that It refers to the actions that may be taken and to

the choice between them. Thus we cannot simply state that we wish

to "discover the reliability"; a suitable statement of the purpose

of the testing would be "we test to determine how to allocate missiles

to a target system." Thus the end result of our tests will be a

choice of one allocation policy. In our example, we are attempting

to choose the number of missiles to be allocated to each target actu-

ally attacked by these missiles, where we have previously decided to

allocate the same number - at most six - to each target. Then our

six possible policies are: allocate 1 missile to each target; allo-

cate 2 missiles to each target)...; allocate 6 missiles to each tar-

get. (Note again that we are ignoring what the missile engineer may

8
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think of as the primary purpose of these tests, namely, to find

hidden bugs in the system. In fact, of course, operational tests

are never entirely separate from the development tests -- the purposes

overlap a little -- but the present example restricts our attention

to the operational-testing aspects.)

(2) Measure of Merit

The next step is to choose a measure of merit --

a "payoff-function" -- and to calculate its value for each allo-

cation and each "state of nature".* In many practical problems

this choice is the most difficult step -- one which requires and

deserves a great deal of careful thought. The techniques of the

analysis are independent of the validity of the choice of the pay-

off function; of course, the usefulness of the result depends cri-

tically on this choice.

For our example we have a chosen a measure of merit based

on the idea that we wish to have a high assurance that those targets

actually attacked are destroyed. We choose, therefore, the assurance

level that we desire, and denote it by Q. Notice that this assurance

level Q, unlike the confidence coefficient C, has an explicit opera-

tional significance. We give ourselves credit for a target destroyed

only if the number of missiles assigned to the target is large enough

to make the probability of destruction of the target at least Q.

For this example we make these simplifying assumptions:

first, that the weapon yield and the missile accuracy are such that a

missile that operates properly (i.e., a "reliable" missile) will reach

the target and destroy it; second, that all targets are of equal value

and we wish to achieve the same assurance of success Q for each onel

third, that no other weapons are used on these same targets) fourth,

*A "stat o nature" is simply a fact about the real world, which may
be considered as a "choice" made by "nature". The concept is useful
when we are dealing with an unknown quantity (such as the reliability
in our example); a value, or range of values of that quantity may be
called a "state of nature".
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that a missile will not damage targets that it was not aimed at)

and fifth, that all missiles have the same probability of operating

properly (this probability is denoted by R and is called reliability).

The probability that a target will survive an attack

by k missiles, each of reliability R, is then

(1 - R) k,
and the probability that it is hit by at least one of those k
missiles is k

1 - (1 -R)

Now, if we knew R we could simply calculate the smallest k for

which k

and assign k missiles to each target.

It is clear that if testing cost nothing, we could test

until (with any desired probability of any desired precision) we knew

the actual value of R, and so could choose the correct value of k

for the actual situation.

We will now show how statistical decision theory helps

us take account of the fact that testing is not free. First we draw

up a table showing the payoff -- the average number of targets killed

per missile in the stockpile -- under various conditions. This pay-

off is of course a function of the number of missiles required per

target (which depends on the "state of nature", or in this case on

the value of the unknown R), and is also a function of the number of

missiles actually assigned per target. For example, assume that we

want 90% assurance of target destruction (or, in our notation,

Q = 0.90)) then, using the condition that 1 - (1 - R)k must be at

Least Q, we can calculate the range of R-values for which 1 missile

is required, 2 missiles are required, etc., and so generate the first

two columns of Table 1.
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The lowest value of R in Table 1 is 0.319 because we

assume for this example that the results of the R and D test firings

permit us to ignore the possibility of R being less than 0.319.

The zeroes in the lower left corner of the payoff

matrix result from the assumption that no credit is given for attack-

ing a target with fewer missiles than are required for a probability

Q of destroying the target. The Commander wants to know with 90%

assurance that certain specific targets were killed. To illustrate

how the rest of the table is constructed we calculate the starred

value in row 2, column 4. We are allocating four missiles to each

target so that each four missiles suffice for one target. The

average is 1/4 target per missile, and that number of targets will

in fact be killed with probability greater than 90%, since two

missiles would have been enough.

The reader may have misgivings about using this particu-

lar payoff function. We think that it is reasonable; but in any case

it will serve as an example of a biased payoff function, since allo-

cating too few missiles is much more costly than allocating too many.

(3) Prior Distribution

Statistical decision theory requires, in addition to

the payoff matrix, a "prior probability distribution on the states

of nature." This must be developed as the consensus of opinion of

the statistician and the executive and should be an attempt to ex-

ploit whatever information and Judgment are at hand. In our hypo-

thetical missile-testing example, we might feel fairly certain that

the reliability R lay in a certain range; if we could then agree on

an estimate of betting odds for R lying in various intervals, and

if we could agree on the general form of the distribution of R, we

could make an estimate of the probability of each interval in the

first column of Table 1, and could compute from those numbers the
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probability of requiring various numbers of missiles. That estimated

distribution, based on prior experience, is called the prior (or a

priori) distribution.

The concept of prior probability distribution lies at the

center of statistical decision theory; it is treated at length in

sections 5 and 6 of this paper.

(4) Preposterior Analysis

Before we perform any experiment, or even decide what

expe-iment to perform, we will make what Raiffa and Schlaifer (ref. 4).

call the preposterior analysis. The purpose of that analysis is to

evaluate possible experiments. In the course of the analysis we shall

learn how to use the results of the experiments.

Consider for the moment some proposed experiment E, and

some one possible result X of that experiment. (In our example,

choosing the experiment consists simply of choosing the number n

of missiles to be tested, and the result can be expressed by giving

the number m of successful firings out of those n tests.) On the

basis of that result X we will modify our prior distribution in the

following way: each state of nature that would have made the observed

results probable will be considered more likely than before (i.e.,

its posterior probability will be larger than its prior probability);.

and each state of nature that would have made the observed results

improbable will be considered less likely than before. (In particular,

any state of nature incompatible with the observed result X will be

excluded from further consideration.)

(a) Bayes' Formula

The above ideas are made precise by Bayes' formula,

which, in its general form is

P(AIX) M P(XA). P(A)P(X)
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where P(A) is the prior probability of the state of nature A,

P(X) is the prior probability of observing the result X, and

P(AIX) is the posterior probability of the state of nature A if

the experimental result X has been observed.* The formula can be

interpreted in the following way:

(i) the prior probability P(A) of the state of

nature A is multiplied by the probability P(XIA) of the observed

result occurring if A were true; the resulting number P(A).P(XIA)

measures the relative weight to be given to A in the posterior

distribution)

(ii) that set of relative weights (one for each state

of nature A) must be divided by their sum, to get a set of weight-

ing-factors (which must add up to unity);

(iii) the formula quoted above results as soon as we

remark that the sum of those numbers, for all possible A and some

fixed X, is Just P(X); i.e.,

-A(P(XIA.P(A) = P(X). **

In our missile-testing example, the state of nature

corresponds to some value or set of values of the unknown reliability

R, and the test result will be m, the number of missiles (out of

the total of n tested) which were successful. Bayes' formula now

lets us calculate P(AIX), the posterior probability of the state of

nature A after we have performed the experiment E and observed the

test result X.

*The formula can be established by observing that the probability
of the Joint event A and X is expressible either as P(A).P(XIA) or
as P(X).P(AIX)) on equating these expressions and dividing by P(X),
Bayes' formula results.

**The prior probability P(X) is the average (over all states of
nature) of the probability P(XIA) of observing X if A is true,
weighted according to the prior distribution P(A).
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(b) Optimal Terminal Actions

The posterior distribution obtained above represents

our Judgment (as modified by the test results) of the plausibility of

the various states of nature. For any one terminal action (i.e., in

our example, for any one allocation policy), we have a set of payoffs,

one for each state of nature; from that set of payoffs we can calcu-

late the expected payoff (using the posterior probabilities on the

states of nature as weights). Then we may select, for the proposed

experiment E and possible result X, that terminal action which offers

the greatest expected payoff, and record it as the optimal terminal

action. We also record the expected value of the corresponding pay-

off.

(c) Expected payoff from an experiment

Consider now the other possible outcomes of the partici

lar experiment E, and calculate for each of them the optimal terminal

action and the expected value of the corresponding payoff.

When that process has been completed, we must con-

solidpte those expected payoffs, which depend on the result X as

well as on E. For this purpose we average them, using the prior pro-

babilities P(X) of the various outcomes as weights, to obtain the over-

all expected payoff of the experiment E.

(d) Comparison of experiments

Now consider the totality of experiments under con-

sideration, and perform the above expected-payoff calculation for

each of them. Assess also the costs of each experiment. If the

costs of the experiment can be expressed in the same terms as the

payoffs, then the "design of the experiment" consists only in

choosing that experiment which maximizes the difference (payoff

minus cost). (The word "only" may be misleading, because an enor-

mous amount of calculation may be required in this preposterior

analysis.) If, on the other hand, the payoffs are incommensurable

15
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with the costs of the experiment (e.g., the cost of an experiment is

dollars, while the payoff is military effectiveness of one kind or

another) it is necessary for the statistician to confer with the

decision-maker, and employ the latter's judgment about the operation-

al implication of the various payoffs, to decide which experiment to

perform.*

Note that we have already made the calculations

which tell us which terminal action to take when the experiment is

complete and its result has been observed.

(5) Computations for the example.

In Table 2, a possible prior distribution (whose origin

will be described in section 6 below) has been inserted as column

4. Table 2 represents the same situation as Table 1, with two changes:

(a) the range of R, within which two missiles per target are required,

has been divided into two smaller ranges in order to improve the pre-

cision with which later calculations can be made; (b) the midpoints

of the ranges of R have been introduced in order to have a point value

for use in later calculations.

We consider first the experiment n = 1, in which we test

one missile. (Throughout this example we assume that the test missiles

do not come from the stockpile, so that the number of missiles avail-

able to fire against targets is not reduced by the test program.) The

possible outcomes are m = 0 (no successes, i.e., the missile fails)

*The concept of cost associated with testing may be a much richer con-
cept than the term "cost" ordinarily suggests. Statistical decision
theory permits it to include not only the dollar cost of production
of test missiles, but also, for example, as negative costs, the advan-
tages accruing from keeping production lines operating and from the
crew training and experience which result from test firing. Insofar
as this enrichment adds incommensurable elements to the cost, making
cost a vector instead of a scalar, it complicates the later choice of
an experiment) but the principles of the statistical theory are not
affected.
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TABLE 3
Calculation of P(X)

State .of Prior P(XIA)
Nature Probabilit'y Conditional P(XIA).P(A)

A P(A) Probability
of Success

1 .210 .950 .199

2 .322 .850 .274

3 .276 .742 .205

4.161 .61o .098

5 .024 .487 .012

6 .005 .404 .002

7 .002 .344 .001

Total: .791 PM
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and m - 1 (one success, i.e., the missile succeeds.) The posterior

probabilities for m - 0 or 1 respectigely are given in the two

columns at the extreme right of Table 2, which are calculated

directly from Bayes' formula (cf. paragraph 4b(4)(a)). For example,

let us calculate the second entry in the last column. Bayest formula

is P(AIX) = , where the A is state of nature No. 2, 0.800

< R < 0.899; X is the result "the missile succeeds"; P(A) = 0.322 from

column 4 of Table 2; P(XIA) is the probability of X (i.e., success)

given that R is in the specified range, and we take 0.850 as a mid-

range representative value of the reliability, so that P(XIA) = 0.850.

Thus P(XjA).P(A) = 0.850 x 0.322 = 0.274. To calculate P(X) we must

do the same calculations for all values of A, and form the sum as

shown in Table 3. We find that P(X) =2AP(XA).P(A) = 0.791. Then

P(AIX) = 07 = 0.346, as appears in the second

place of the last column, Table 2.

The expected payoff (in targets per missile in stockpile),

for each of the six methods of missile assignment considered, is

shown at the foot of the column corresponding to that assignment in

Table 2: each value in the row called "Expected Payoff, Test 1,

Fail" is obtained by averaging the seven payoffs in the corresponding

column, using the weighting-factors given by the posterior probabili-

ties for m = 0; the values in the row called "Expected Payoff, Test 1,

Succeed" are similarly calculated using the posterior probabilities

for m = 1.

The maximum value in each row is underlined; it happens

to be the value corresponding to "allocate two missiles per target,"

both for the "Fail" row and for the "Succeed" row. The decision-

rule implied by these calculations, if we decide to test one missile,

is to allocate two missiles per target, whether the missile succeeds

or not. The overall expected payoff, in case we decide to test one

19
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missile, is to allocate two missiles per target, whether the missile

succeeds or not. The overall expected payoff, in case we decide to

test one missile, is equal to the probability of failure times the

payoff expected in case of failure, plus the probability of success

times the payoff expected in case of success. This is the calculation

at the bottom of Table 2; since, as shown in Table 3, the overall pro-
bability of success is 0.791, the overall probability of failure must

be 0.209, and the expected payoff is 0.404 targets per missile.

Naturally, we include in the set of "experiments"

to be considered the case where we do no testing. This is the case

n = 0 (test no missiles), and the posterior distribution is of course

identical with the prior distribution. The expected payoff for each

method of allocation, if we take n = O, is given in the row of Table

2 labeled "Expected Payoff, No'Testing." Each of these values was ob-

tained by averaging the payoffs in the corresponding column, using

in this case the prior probabilities as weights. Again, the maximum

value would have been obtained when two missiles were allocated per

target, and the expected payoff would have been 0.404. We see that

testing one missile would not increase the expected number of targets

killed per missile. This is not surprising when we realize that we

would take the same action (allocate two missiles) for each of the two

possible outcomes of the single test; since no possible outcome of the

experiment would affect our action, the test is not worth doing. (Of

course, such a test might affect other actions not considered in the

model, and it might be worth doing for those other reasons.)

We may make similar calculations to decide whether

we wish to test more than one missile. For example, Table 4 shows

the calculations for the proposal to take n = 2, (i.e., to test two

missiles.) The expected payoff is then 0.408 targets per missile in-

stead of 0.404. If 20 missiles are tested (the calculations are not

exhibited in this paper) the expected payoff is 0.480 targets per
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stockpile missile. If 40 are tested, the expeoted payoff is 0.512

targets per missile. (For example, with a stockptle of 300 missiles,

we find that testing two missiles increases the number of targets

killed from )21 to 122, testing 20 missiles increas s the number of

targets killed to 144, and testing 40 increases it to 154.) This

information is summarized in Figure 3, page 34.

The results of calculations of this type, as pre-

sented in Figure 3, furnish the data needed to make a decision on

how many missiles to test. However, the use of data of this kind to

decide how many missiles to test may require military, political, and

economic judgment. The statistician, as such, is not qualified to

make the decision; although his advice should be given when asked for,

the final decision should not be his.

(6) Employment of the Computational Results

Our exposition so far has shown how information from

missile testing can be used to increase the number of targets des-

troyed by a given missile force. The choice of the number of missiles

to test would appear to require simply a comparison of the cost of

testing and the value of the extra targets destroyed. But a direct

comparison of these two variables can only be made when they are both

measurable in a common unit (such as dollars). We first give in

paragraph 4.b.(6)(a) an example showing how the choice is made when

such a common unit does not exist; then the example of paragraph

4.b.(6)(b) illustrates how to use such a common unit, in case it does

exist.

(a) In the present section we show how the choice may be

made without an explicitly stated common unit of measurement for cost

of missiles tested and value of targets destroyed.

The essence of the method is a liberal application

of intuition and Judgment to numbers of the kind presented in Table 5,
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which are prepared by the statistician. The intuition and Judgment

are furnished by the executive, who examines the rows that correspond

to possible stockpiles -- Just one row if he knows what the stockpile

is or will be. Let us assume that the stockpile is firmly established

at 300 missiles. The executive examines the number of targets killed

in the 300-missile stockpile row, noticing, for example, that the

first 10 missiles tested buy 12 extra targets destroyed (from 121 to

133) and that ten missiles tested after 40 have already been tested

buy only three extra targets destroyed (from 154 to 157).

In some tactical situations an extra three targets des-

troyed may be very important. If the executive predicts that this

is the situation he will be faced with, he may decide to test 50

missiles. On the other hand, he may feel that the 150 targets killed

TABLE 5

No. of Msls
tested 0 10 20 30 40 50

Msl
Stockpile

100 40 45 48 50 51 52

200 81 89 95 100 102 lo4

00 121 133 144 15o 154 157

400 162 178 191 200 205 209

500 202 223 239 250 256 261
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with 30 missiles tested is the right place to operate, since the
extra four targets killed by increasing from 30 to 40 missiles tested
are not sufficiently important to justify the cost of testing 10

missiles. If the actual stockpile is not firmly established,

possible stockpiles are examined just as the 300 stockpile was
examined; the choice of number of missiles to test is made by sub-
jective weighting of the choices for each stockpile.

Of course, analysis of this kind implicitly involves

a common unit for measuring cost of missiles tested and value of tar-
gets destroyed. Nevertheless, a rational executive may find this
method of decision more congenial than one which requires him to be-

gin by making an explicit assignment of a dollar value to targets des-

troyed.

(b) For this second example, we assume that the cost

and value data can be expressed in a common unit. Specifically, we

assume that the cost of testing n missiles is simply nC dollars,
where C is the cost of testing one missile, and that the value of

attacking one additional target can be expressed in monetary terms

as KC dollars, where K is some factor (presumably greater than 1)

which we must estimate. For example, if the value of attacking one

additional target was considered equal to the cost of a test missile,

we would assign the value of K - 1; if the value of attacking an

additional target was considered to be ten times the cost of a test

missile, we would assign the value of K - 10. Believing that a

target attacked is worth much more to us than the cost of the missile

attacking it, we may feel that K should be between 1 and 10.

Denote by T(n) the average number of targets struck

per missile, if we test n and make the optimal allocation; a graph

of T(n) against n is given in Figure 3. Then the total number of

targets attacked, if we have a stockpile of S missiles and test n
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missiles, is ST(n), and the value to us of attacking these targets,

at KC dollars per target, is KCST(n). The cost of testing n

missiles is nC, so we wish to maximize the difference KCST(n) - nC,

which equals KCS(T(n) - n ) " This will be maximized when the curve

T(n), plotted as a function of n as in Figure 3, (page 34), has

slope (KS) "I . Tangent lines are drawn on Figure 3 with slopes

1, 1 , and 1 showing that:

for KS = 100 -- either K = I and a stockpile of

100 missiles, or K = 10 and a stockpile of 10

missiles -- we should do no testing;

for KS = 234 it is a matter of indifference

whether or not we do any testing, but if we do

test we should test about 11 missiles; and

for KS = 1000, we should test about 44 missiles.

If we take K = 3 for example, we show in Table 6
how the nunber tested depends on the stockpile S. In this case a

stockpile of 300 missiles would imply that we should test 40 missiles.

TABLE 6

S, n,
Number of Missiles Number of Missiles

in Operational Stockpile to be tested

< 78 0
78 0 or 11

100 15

120 18

150 22
200 29
300 40

25I



5. Another Objection

The key to the procedure that we have expounded above is the

assignment of a prior distribution to the states of nature.

a. The strongest argument against the procedure is that the

concept of a prior distribution of a parameter (in our example, R)
is logically meaningless; it can be argued that R is not a random

variable, but a fixed (though unknown) value. This question, which

really concerns the foundations and philosophy of probability theory,

has not received, and probably never will receive, universally

accepted answers. Nevertheless, some counter-arguments can be made:

(1) First, for classical statistics to be useful at all, one

must in some way weight the possible states of nature. Furthermore,

the implicit weighting which characterizes most applications of

classical statistics is subject to the same logical objections as
Bayesian statistics, but fails to y".eld any of the benefits of the

Bayesian methods. For example, one decides about the alternatives

among which one is going to choose, and one thereby completely

excludes from formal consideration a host of imaginable alternatives.
As another example, in setting up an unbiased estimator as a desirable

type (as is normally done in classical applications) one is implicitly

assuming that the expected cost of an error in one direction is equal

to the expected cost of an error in the other direction -- which can

only be true for one ratio of the relative probabilities. Calling

the prior distribution on the states of nature a weighting-function

(which might be subjective), rather than a probability distribution,

is permissible (since both satisfy the postulates of probability

theory) if that soothes the conscience of the logical objector.

(2) Second, any statement of probability can be regarded as

an expression of ignorance. Before we flip a coin, most people will

permit us to say that the probability of a head is 1/2 (or perhaps

some other number near 1/2). After the coin has been flipped, but
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before we have seen it, the probability of a head is surely either

1 (if it is a head) or 0 (if it is a tail). However, it may not be

wholly unreasonable to maintain that the (subjective) probability,

until we obtain some information about the result, should be con-

sidered 1/2. Setting a prior distribution on a fact (namely, the

actual but unknown value of R) seems to be similar in spirit.

(3) Third, modern physics forces us to admit the possibility

that length, position, velocity, etc., are primarily probability

distributions, which only superficially appear to be definite values,

rather than the converse. And the reliability of a missile, or the

truth of a hypothesis, can hardly be considered more concrete and

deterministic than the position of a particle.

b. Another difficulty, even if one admits that the concept of

a prior distribution can be meaningful, is that the determination

of such a distribution may be arbitrary, subjective, and unscientific.

Several remarks must be made in answer:

(1) First, it may happen that the prior distribution actually

has little or no effect on the decisions we make. In our missile-

testing example, the influence of the prior distribution on our

allocation of m4 ssiles will be less important if large numbers of

missiles are tested; then prior distributions that appear very differ-

ent may lead to decisions that are very similar.

(2) Second, the existence of a power known as "Judgment" shows

that subjective opinions need not be arbitrary and may be scientific.

Such opinions may be based on a body of facts and experience which

are valid even though we cannot quote them explicitly.

(3) Third, if it is true (as we maintain) that one cannot

draw any conclusions from an experiment without some prior assumptions,

then the difficulty of making good prior assumptions is regrettable

but irrelevant. For example, Occam's Razor ("Prefer the simplest
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hypothesis consistent with the facts") can be regarded as a preJudloe

in favor of simple physical laws; and modern science could hardly

exist without that unscientific prejudice.

(4) Finally, almost any experiment must be incomplete in

the sense that its subsect is connected to other questions, on

which experiments might also be performed. To make a problem

finite, we must ignore many of those connections. However, the

posterior distributions which resulted from experiments previously

performed may influence (or even determine) the prior distribution

for the present experiment -- and the posterior distribution of the

present experiment may influence the prior distribution for subse-

quent experiments. (In other words, a parameter estimated by one

experimenter should be used by later experimenters with due regard

to the variability of the estimate). If the result of any particular

experiment is very surprising, we may be forced to retract our prior

distribution, saying, "This is a paradox". When the paradox has

been explained, a quite different prior distribution may be postu-

lated for the next experiment; if the results of this new experiment

are then. within the new expected range, we say, "A new theory has

been confirmed".

6. A Practical Problem

If we accept the principle of a prior probability distribution,

we are left with the practical problem of estimating its numerical

values. This is never easy, but frequently one can choose the

general form of the distribution from first principles, and employ

what knowledge we have to estimate the actual distribution.

For example, the numbers given in column 3 of Table 2 were ob-

tained in five steps. First, we assumed that a binomial distribution

with some (unspecified) mean would give a distribution of the right

general Rhape. Second, we assumed that R, the reliability, was not
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less than 0.32 -- i.e., we assumed that not more than 6 missiles
would be required to give 90% assurance of a kill. Third, on the
basis of hypothetical research and development tests, aided by
opinions on the effects of the changes made during development,

we guessed that R looked like 0.8 or so. Fourth, a binomial
distribution with mean 0.8 was selected which gave a reasonable

spread of values for R; we actually chose the binomial distribution

of 10 trials. Fifth, we drew a smooth curve through the points
representing that distribution, as shown in Figure 2* and drew verti-

cal lines separating the ranges of R in whi.h 1, 2, ... , 6, missiles
were required. Sixth, by integrating the various regions under the

curve, we estimated the probability of R lying in each of the ranges

considered. Those prior probabilities were given in column 3 of

Table 2.

7. Summary
We see that the Bayesian approach has done the following for

us:

a. It has permitted a direct comparison of tangible, understand-
able values to decide whether testing pays, and to permit us to
choose the number to test. (As discussed in paragraph 4c and foot-

note, the direct comparison may nevertheless involve a high order

of Judgment).

b. For whatever number we decide to test, it tells us explicitly

how to use the test results to allocate missiles to targets.

c. It permits an experiment, considered as a process for gather-
ing information, to be regarded from a unified viewpoint. Instead
of beginning in a vacuum (with no information about the objects under
test) and ending with a confidence-interval (whose interpretation
in practical terms is very difficult), we begin with opinions (in
the form of the prior distribution) as to the relative likelihood

*See Page 33,



of the various possibilities, and end up with modified opinions
(in the form of the posterior distribution) on those likelihoods.

This makes it mu3h mo.re reasonable to split up a complex set of

experiments into sub-experiments, using the posterior distribution

from one experiment as the prior distribution for another, and

makes it possible to relate distinc.t experiments on the same subject

in a consistent way.

If the possible number of missiles one might test is

large, hand calc ulations of' the kind presented in our examples for

n 0 0, 1., and 2, would be very arduous. Two alternatives are avail-

able: for some payoff funtions and some prior probability distri-

butions, closed-form solutions (formulae for quickly calculating

the answers) can be ob.ained; when closed-form solutions are not

possible the numerlc al zesults may be generated on a high-speed

computer. Resear,'h on the former attack is going forward at Stanford

University and the Universl!,y of Ohl.ago under AFCOA sponsorship.

In addition, a program for tne IBM 7090 has been written at AFCOA

which permits a wide choice of prior- distributions, and which cal-

culates the payoff In a ordan.,e with the methods of this example.
A subsequent OA paper will deszribe the pr-ogram in detail.

3. Conclusion

It is our opinion that the information for applying statistical

decision theory, ir.cludlng a prior distribution, can often be esti-

mated and made available. In many practical cases, more operation-

ally meaningful results can be obtained by using statistical decision

theory than by using the classical statistical estimation theory.

I3



REFERENCES

1. David Blackwell and M. A. Girshitk,
Theory of Games and Statistical Decisions
Wifey, 1954

2. Hex-man Chernoff and Lin.oln E. Moses,
Elementary Decision Theory
Wiley, 1959

3. R. D. Lute and Howard Raiffa,
]ames and Dezisions
Wiley, 1957

4. Howard Raiffa &'id Robert S.,h]ai.er,
Applied Statisticlal Delsicri Tneory
(:raduate School of Business Admnistration
Ha .vazJ University, 1961

5. Robezrt Sc.hlaifer,
Frobability and Statistics for Business Decisions
M Graw-HIl1, 1959

6. Ab-o-:hi-:m Wald,
Statls.ic.-al De.Aston Fun.;tlors
Wiley, 1950

7. G. W. Tyler: G. E. Nikholson, Jr., D. F. Votaw, Jr., J.E. Condon,
Operations Analysis Working Ptper No. 95 - "The Testing
of 'issie Systems"
Hq, USAF

31



M

ittt tt t"l"i 4

4-4;
It it~ "I I 

41

,Iiiiiii~~,1 4 ~ ' 
I 

'jV~~i 
,''i N ~ ~ ~ l. ': *: t; *

4 . - . 4: 4 .8 2 .

+~~~4 
- -+,-4--

22 ~ it 14-

:Jjpt 
I' L

.441

:.- 0 \:: 7:: 
I V I

:241

+ 
4, f.4- 

h I

Tt II 
t : i -I i

4 1 1



R4411H1

fitt

It .~ . tt I

I l I ' 4

411 fi 41" M!I H 11 IttV i lfKil

I I* T 1

4 I I tr~r ~ ti

.ii~j~1

__:_ L_ A.r i 1

-. +T 1' 4fP: i ' "

;I, lit HIH~ ~
4 ifl~ ... 2 iL

___i
4

'4'4W 4-Tit;. '-*. -~

+

T7 4

1.. . . ... ; . 4

.44.

:22.1......

H+ .-

.~j ... ... w . M
I+ --. . . . . . . .'.......

i2 fI JI Ti 811

jgg.; jt 1 iq'

I1 T1 T T.T

1117. M- T

ITT I..

33



I MAM -it'031
----- ------

t 1411

1:7

[RI HIM -4A

Ilk

H 4 d-14 I T: X.MI
t H 110

T J.
_T --7*,' 7- **7: 7-, ... .... .... .. .... ....

or; 
Tq4AL - 4

7 7::

4 1

.. .... ....

-4 : 1+
[i4l

-4 A

......... ...

-77' -- 7

+

-7-.. -7
14'

:Tit:
+ IA-. 11 f v -, k IS

fit+ +

if 11 I

f;4 11: t

...............

T-T 1:1
, j 11W'1 0 Ll PW 1 iiki; ii 4+ oN H ;,241i I flit' 11 t ..........

'41
1E

X., T .11 IJITT-T 1Tr1r==rT1

34



DISTRIBUTION LIST

No. of
Copies

DEPARTMENT OF DEFENSE

Director of Defense Research and Engineering ............... 1
Deputy Director (Research) ...... ...................... 1
Deputy Director (Weapon Systems)...................... 1
Weapons Systems Evaluation Group

Director ........................................ 1
Director of Research ............................. 1

Senior Air Force Member (MaJ Gen N. 0. Ohman) .... 1

Assistant Secretary of Defense (Comptroller) ............... 1
Directorate for Weapon System Analysis ................ 1

HEADQUARTERS USAF

Chief of Staff, USAF
Chief, Operations Analysis (AFCOA) .................... 25
Scientific Advisory Board ............................. 1

Comptrcller of the Air Force
Director of Status Analysis (AFAMA) .............. 1
Director of Data Systems and Statistics (AFASC)........ 1

Deputy Chief of Staff, Research and Technology
Director of Development Planning (AFRDP. ............. 1
Director of Research (AFRDR) .......................... 1
Director of Advanced Technology (AFRDT) ............... 1

Deputy Chief of Staff, Systems and Logistics ............... 1
Assistant for Logistic Planning (AFSLP)............... 1

Deputy Chief of Staff, Plans and Programs
Air Battle Analysis Division (AFXPD-ABA) .............. 1

Deputy Chief of Staff, Operations
Director of Operational Requirements (AFORQ) .......... 1

I



AIR FORCE COMMANDS No. of
Copies

Hq Command, USAP
Air Force Intelligence Center, Arlington Hall Station,

Arlington 12, Virginia .............. . . . ... . . . . 1

Air Defense Command
ADC (ADOOA) Ent AFB, Colo ........................ . 1
26 Air Div (2600A), Hancock Field, Syracuse 25, N.Y ..... 1

Air Force Logistics Command
AFLC (MCFR), Wright-Patterson AFB, Ohio ................. 1

cir Force Systems Command

AFSC (SCAXC-Technical Library), Andrews AFB, Wash 25, D.C. 1
AFMTC (MTGO, Mr. Fennema), Patrick AFB, Fla.............. 1
ASTIA, Arlington Hall Station, Arlington, Va ............. 1

Air University
Air War College, ATTN: Evaluation Staff, Maxwell AFB, Ala. 1

Strategic Air Command
SAC (OA) Offutt AFB, Nebr ................... ............. 1
15AF (OAf, March AFB, Calif ............................... 1
8th 0AF(OA), Westover AFB, Mass ........................... 1
2AF (OA), Barksdale AFB, La .............................. . 1
1 STRATAD (OA), Vandenberg AFB, Calif .................... 1

Tactical Air Command
TAC (TPL-OAD), Langley AFB, Va ........................... 1

Alaskan Air Command
AAC (OA), APO 942, Seattle, Wash .......................... 1

Alaskan Command
Hq ALCOM (OA), APO 942, Seattle, Wash ..................... 1

Pacific Air Force
PACAF (PFOOA), APO 953, San Francisco, Calif .............. 1
5AF (5FOOA), APO 925, San Francisco, Calif................ 1

United States Air Forces in Europe
Hq USAFE (OA), APO 633, New York, N.Y.................... 1

t

I -,-



OTHER COMMANDS No. ofCop ...

Commander in Chief, Pacific
Operations Analysis Office (J301), Attn: Mr. Roy F.

Linsenmeyer, Box 17, FPO, San Francisco, Calif ........ 1

North American Air Defense Command
CINC NORAD (NOOA), Ent AFB,Colo........................ 1

Fourth Allied Tactical Air Force
Operations Analysis Office, Hq 4th ATAF, APO 12, New
York, New York ........................ ............... 1

OPERATIONS ANALYSIS STANDBY UNITS

Operations Analysis Standby Unit, University of North Carolina,
P.O. Box 1146, Chapel Hill, North Carolina .............. 1

Dept of Industrial Engineering, Operations Analysis Standby
Unit, Iowa State University of Science and Technology,
Box 62, Station A, Ames,Iowa........................... 1

Operations Analysis Standby Unit, Denver Research Institute,
University of Denver, Denver, Colorado................. 1

O erations Analysis Standby Unit, Room 310 - Logan Hall,
University of Pennsylvania, Philadelphia, Penna ......... 1

DEPARTMENT OF THE NAVY

Operations Evaluation Group, Dept of Navy, Wash 25 D.C...... 1

Commandant, Naval War College, Newport, Rhode Island........ 1

Office of Naval Research, Dept of Navy, Wash 25, D.C.
(Attn: Dr. Lundegard) .............................. 1

C ONTRACTORS

Analytic Services, Inc., 1101 N. Royal St., Alexandria, Va.. 1

Corporation for Economics and Industrial Research, Research
Center, 1200 Jefferson Davis Highway, Arlington, Va.... 1

37



No. of
Copies

CEIR, 11753 Wilshire Blvd., Los Angeles 25, California ......... 1

General Electric Co., Santa Barbara, California ................ 1

International Business Machines Corp., 111 Connecticut Ave.,N .W . , W a s h i n g t o n , D . C . .* .. . . . . . . . . . . . .... . . . . 1

The MITRE Corporation, Bedford, Mass ........................... 1

Research Analysis Corporation, 6925 Arlington Road, Bethesda,Maryland .................................................. 1

The RAND Corporation, 1700 Main Street, Santa Monica, Calif .... 1

The RAND Corporation, 1000 Connecticut Ave., Washington, D.C... 1

Stanford Research Institute, Menlo Park, California ............ 1

Stanford University, Dept of Statistics, Palo Alto, California,
(Attn: Prof. Solomon) .................................... 1

Systems Development Corporation, 2500 Colorado Avenue,
Santa Monica, California ................................... 1

University of Chicago, Laboratories of Applied Sciences,
Museum of Science and Industry, Chicago 37, Illinois ...... 1

University of Chicago, Dept of Statistics, Chicago, Illinois,
(Attn: Prof. Kruskal) .i. ...................... . .... 1

University of Georgia, Athens, Ga., (Attn: Prof. Cohen) ....... 1

~38

B



No. of
Co~1*a

CONSULTANTS

Professor Holt Ashley, Massachusetts Institute of TechnologyCambridge, Mass ..................... ........... ........ 1

Dr. Leroy A. Brothers, Dean, Dept. of Engineering, Drexel
Institute of Technology, Philadelphia 4, Pennsylvania.. 1

Dr. Wendell Dwyer, Westinghouse, 1000 Connecticut Ave., N.W.,Washington, D.C ....... .. .. . .. .. . . 6-. ..... .... 1

Dr. Roland Larson, Applied Physics Laboratory, Johns Hopkins
University, Silver Spring, Maryland .................... 1

Dr. George E. Nicholson, Jr., Department of Statistics,
University of North Carolina, Chapel Hill, North
Carolina .................................... ........ ........ 1

T)r. Martin D. Schwartz, North American Aviation Corporation,
Downey, California .................................... 1

Professor Jack Silber Department of Mathematics, Roosevelt

College, Room 416, Chicago 5, Illinois ................. 1

Dr. W. Norris Tuttle, General Radio Corp., Concord, Mass .... 1

Mr. Roger Wilkinson, Bell Labs, New York, New York .......... 1

OTHER

U.S. Operations Research Groups, Liaison Representative
U.K., Box 92, USN 100 FPO, New York, N.Y .............. 1

Shape Air Defense Technical Center, (SADTC), The Hague,Netherlands ............ ..............................-...

Assistant Secretary General for Scientific Affairs, NATO,
Place du Marechal de Lattre de Tassigny (Porte
Dauphine), Paris XVI, France ...........................

Auburn University, Mechanical Engineering Dept, Auburn,
Alabama (Attn: Prof J. Grady Cox) ..................... 1

39


